Decomposing the parameter space of biological networks via a numerical discriminant approach

نویسندگان

  • Heather A. Harrington
  • Dhagash Mehta
  • Helen M. Byrne
  • Jonathan D. Hauenstein
چکیده

Many systems in biology, physics and engineering can be described by systems of ordinary differential equation containing many parameters. When studying the dynamic behavior of these large, nonlinear systems, it is useful to identify and characterize the steady-state solutions as the model parameters vary, a technically challenging problem in a high-dimensional parameter landscape. Rather than simply determining the number and stability of steady-states at distinct points in parameter space, we decompose the parameter space into finitely many regions, the steady-state solutions being consistent within each distinct region. From a computational algebraic viewpoint, the boundary of these regions is contained in the discriminant locus. We develop global and local numerical algorithms for constructing the discriminant locus and classifying the parameter landscape. We showcase our numerical approaches by applying them to molecular and cell-network models. keywords: parameter landscape, numerical algebraic geometry, discriminant locus, dynamical systems, cellular networks

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Online Monitoring and Fault Diagnosis of Multivariate-attribute Process Mean Using Neural Networks and Discriminant Analysis Technique

In some statistical process control applications, the process data are not Normally distributed and characterized by the combination of both variable and attributes quality characteristics. Despite different methods which are proposed separately for monitoring multivariate and multi-attribute processes, only few methods are available in the literature for monitoring multivariate-attribute proce...

متن کامل

Monthly runoff forecasting by means of artificial neural networks (ANNs)

Over the last decade or so, artificial neural networks (ANNs) have become one of the most promising tools formodelling hydrological processes such as rainfall runoff processes. However, the employment of a single model doesnot seem to be an appropriate approach for modelling such a complex, nonlinear, and discontinuous process thatvaries in space and time. For this reason, this study aims at de...

متن کامل

A Deterministic Multiple Key Space Scheme for Wireless Sensor Networks via Combinatorial Designs

The establishing of a pairwise key between two nodes for encryption in a wireless sensor network is a challenging issue. To do this, we propose a new deterministic key pre-distribution scheme which has modified the multiple key space scheme (MKSS). In the MKSS, the authors define two random parameters to make better resilience than existing schemes. Instead of a random selection of these parame...

متن کامل

Intrusion Detection in IOT based Networks Using Double Discriminant Analysis

Intrusion detection is one of the main challenges in wireless systems especially in Internet of things (IOT) based networks. There are various attack types such as probe, denial of service, remote to local and user to root. In addition to known attacks and malicious behaviors, there are various unknown attacks that some of them have similar behavior with respect to each other or mimic the norma...

متن کامل

Bifurcation search via feedback loop breaking in biochemical signaling pathways with time delay

We develop a method to locate bifurcations in time delay systems with a potentially high-dimensional parameter space. It is based on the feedback loop breaking approach that we developed and applied earlier for bifurcation search in ordinary differential equations. The method is particularly suited for the analysis of biological networks, for example to determine which parameters are relevant f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016